Abstract

AbstractThe use of directional antennas in mobile ad hoc networks (MANETs) has shown to offer large throughput gains relative to omnidirectional antennas. When used in ad hoc networks, directional medium‐access‐control (DMAC) protocols usually require all nodes, or part of nodes, to be aware of their exact locations. This location information is typically provided using a global positioning system (GPS). Although GPS systems are designed to be as nearly accurate as possible, there are still estimation errors that can cause a relatively large deviation from the actual GPS receiver position. In this paper, we investigate the effect of inaccurate node position estimation on the throughput of these protocols. Our results clearly indicate that the advantages of DMAC protocols diminish if the available position information is not accurate enough. As an alternative, we propose an efficient DMAC protocol that utilizes signal parameter estimation via the rotational invariance technique (ESPRIT) for direction‐of‐arrival (DOA) estimation; alleviating the need for GPS and, hence, avoiding the degrading associated with typical GPS position estimation errors. Moreover, unlike GPS‐based protocols, our protocol is suitable for both outdoor and indoor applications. Under different operating conditions and channel models, our simulation results show the throughput improvement achieved using the proposed protocol relative to the IEEE 802.11. Copyright © 2007 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.