Abstract

High-speed electron microscopy strongly demands a high-brightness electron gun in order to increase the number of image forming electrons. A few years ago, a laser-pulsed high-brightness electron gun was introduced. Fig.1 shows the experimental set-up, A standard triode system was supplemented with a Nd:YAG laser, focussing optics and a modified anode, which incorporates the laser deflection mirror. The frequency doubled laser pulse (τ =5 ns, λ = 532 nm) is focused through a window onto the tip of the tungsten hairpin emitter. The laser treated area (≈ 100 μm diameter) is heated well above the melting point, which results in a strong thermal electron emission. Due to rapid heat-up and fast cool-down of the tungsten surface short electron pulses with a duration of 20 ns and a maximum current of 20 mA at 80 kV are emitted. A destruction of the tungsten wire is avoided, too. Laser energies used for the generation of electron pulses are in the range of 100 μJ. Due to these minor modification, the DC operation of the electron gun is not disabled, which allows a convenient adjustment in the DC mode and then switching into the pulsed operation mode. Fig.2 shows a typical electron pulse emitted by the gun. Shorter electron pulses up to 5 ns can be generated by a beam blanking unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.