Abstract

We present the design and characterization of a large-area Cryogenic PhotoDetector designed for active particle identification in rare event searches, such as neutrinoless double beta decay and dark matter experiments. The detector consists of a 45.6 cm2 surface area by a 1-mm-thick 10.6 g Si wafer. It is instrumented with a distributed network of Quasiparticle-trap-assisted Electrothermal feedback Transition-edge sensors with superconducting critical temperature Tc=41.5 mK to measure athermal phonons released from interactions with photons. The detector is characterized and calibrated with a collimated 55Fe x-ray source incident on the center of the detector. The noise equivalent power is measured to be 1×10−17 W/Hz in a bandwidth of 2.7 kHz. The baseline energy resolution is measured to be σE=3.86±0.04 (stat.)−0.00+0.19 (syst.) eV. The detector also has an expected timing resolution of σt=2.3 μs for 5 σE events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.