Abstract
A heat pipe thermosyphon radiator for use in domestic and industrial heating applications is presented. A test cell for the radiator is described and various experimental tests have been performed to determine the feasibility and performance of a heat pipe thermosyphon radiator. The thermosyphon radiator has been tested with freon 11, acetone, methanol and water as working fluids, and was compared with a conventional radiator. Best performance was obtained using methanol and acetone, and compares well with the conventional radiator. In addition, with these working fluids the thermosyphon radiator, by design, has desirable isothermal surfaces. The worst performance was with water, where local hot and cold spots formed on the radiator surface and the performance was poor. A natural convection/radiation model is presented for the thermosyphon radiator, and good agreement between measured and calculated heat transfer is obtained. The model reveals that typically 60% of the heat is transferred by natural convection and the remaining 40% by radiation. Advantages and further development of the thermosyphon radiator are discussed. © 1997 by John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.