Abstract

A novel electrode is developed to detect electrocardiogram (ECG) signals using the top grain leather and split leather of pig as the substrate due to their mechanical strength, flexibility, permeability, long-term durability and visual acceptance. The natural leather is pre-treated with Ar plasma and a thin silver paste coating is brush-painted on the surface to gain electrical conductivity. The sheet resistance of the electrodes is approximately 120 mΩ sq−1. The electrodes based on leather can reliably transmit low-frequency and low-voltage signals, which benefit the acquisition of cardiac signals. Although the electrode-skin contact impedance of the dry leather-based electrodes is higher than the silver/silver chloride (Ag/AgCl) electrodes, the contact impedance decreases at least 57.74% after wetting the skin. All cardiac waves obtained by the leather-based electrodes are clear and visible, and the signal-to-noise ratio (SNR) of electrodes are higher than the Ag/AgCl electrodes. The electrodes based on leather have great potential for smart wearable devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call