Abstract
Deciding whether patients with a cytologically indeterminate thyroid nodule should be referred for surgery or for active surveillance is an important challenge for clinicians. The aim of this study was to evaluate the performance of a novel dual-component molecular assay as an ancillary molecular method for resolving indeterminate thyroid nodule cytology. We selected 156 thyroid nodules from those that had undergone fine-needle aspiration processed by liquid-based cytology and surgical resection between June 2016 and December 2017. The sample set included 63 nodules cytologically classified as indeterminate, and 93 other nodules randomly selected from those with non-diagnostic, benign, suspicious, or malignant cytology. Nucleic acids from each nodule were subjected to next-generation sequencing analysis for mutation detection in 23 genes and to digital polymerase chain reaction (PCR) evaluation for miR-146b-5p expression levels. Used alone, mutation analysis in the indeterminate subset (cancer prevalence: 22.5%) displayed high sensitivity (89%) and NPV (96%). In contrast, the miR-146b-5p assay offered high specificity (93%) and PPV (93%). Combined use of both analyses improved panel performance by eliminating false-negative results. These preliminary data suggest that a dual-component molecular test can increase the diagnostic accuracy of thyroid cytology alone by reducing the number of nodules that will be classified as indeterminate and increasing those that can be reliably classified as benign. If these findings are confirmed, this test can be considered for use in clinical practice and is expected to reduce diagnostic surgery and health care costs, and to improve patient quality of life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.