Abstract
ABSTRACT An attempt has been made to produce stable water–diesel emulsion with optimal formulation and process parameters and to evaluate the performance and emission characteristics of diesel engine using this stable water–diesel emulsion. A total of 54 samples were prepared with varying water/diesel ratio, surfactant amount and stirring speed and water separation was recorded after 24 and 48 hr of emulsification. The recorded data were used in artificial neural network (ANN)-particle swarm optimization (PSO) technique to find the optimal parameters to produce water–diesel emulsion for engine testing. The predicted optimal parameters were found as 20% water to diesel ratio, 0.9% surfactant and 2200 rpm of stirrer for a water separation of 14.33% in one day with a variation of 6.54% against the actual value of water separation. Water–diesel emulsion fuel exhibited similar fuel properties as base fuel. The peak cylinder gas pressure, peak pressure rise rate and peak heat release rate for water–diesel were found higher as compared to diesel at medium to full engine loads. The improved air-fuel mixing in water–diesel emulsion enhanced brake thermal efficiency (BTE) of engine. The absorption of heat by water droplets present in water–diesel emulsion led to reduced exhaust gas temperature (EGT). With water–diesel emulsion fuel, the mean carbon monoxide (CO), unburned hydrocarbon and oxides of nitrogen (NOx) emissions reduced by 8.80, 39.60, and 26.11%, respectively as compared to diesel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.