Abstract

PurposeTo examine whether a microperimetry testing strategy based on quantifying the spatial extent of functional abnormalities (termed “defect-mapping” strategy) could improve the detection of progressive changes in deep scotomas compared to the conventional thresholding strategy.MethodsA total of 30 healthy participants underwent two microperimetry examinations, each using the defect-mapping and thresholding strategies at the first visit to examine the test–retest variability of each method. Testing was performed using an isotropic stimulus pattern centered on the optic nerve head (ONH), which acted as a model of a deep scotoma. These tests were repeated at a second visit, except using a smaller stimulus pattern and thereby increasing the proportion of test locations falling within the ONH (to simulate the progressive enlargement of a deep scotoma). The extent of change detected between visits relative to measurement variability was compared between the two strategies.ResultsRelative to their effective dynamic ranges, the test–retest variability of the defect-mapping strategy (1.8%) was significantly lower compared to the thresholding strategy (3.3%; P < 0.001). The defect-mapping strategy also captured a significantly greater extent of change between visits relative to variability (−4.70 t−1) compared to the thresholding strategy (2.74 t−1; P < 0.001).ConclusionsA defect-mapping microperimetry testing strategy shows promise for capturing the progressive enlargement of deep scotomas more effectively than the conventional thresholding strategy.Translational RelevanceMicroperimetry testing with the defect-mapping strategy could provide a more accurate clinical trial outcome measure for capturing progressive changes in deep scotomas in eyes with atrophic retinal diseases, warranting further investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.