Abstract
BACKGROUND The environmental and health effects caused by oxytetracycline (OTC) contamination of aquatic systems are a serious problem throughout the world. The OTC-contaminated wastewater cannot be treated effectively by conventional anaerobic and aerobic biological treatments. Few studies have investigated the systematic treatment of OTC-contaminated wastewater. RESULTS A system including micro-electrolysis (ME), an expanded granular sludge bed (EGSB) and an anoxic/oxic activated sludge process (A/O) could treat OTC production wastewater effectively. First, a ME reactor packed with new ceramic-corrosion-cell fillers, serving as a pretreatment step, was effective in removing residual OTC and enhancing biodegradability of the wastewater. Second, EGSB and A/O reactors played the main role in removing chemical oxygen demand (COD), ammonium nitrogen (NH3-N) and chroma (color of the wastewater). After reaching steady state, the coupled ME-EGSB-A/O system removed more than 95.0% of COD, 90.0% of NH3-N and 80.0% of color, and the final effluent met the requirements of the national discharge standard (COD ≤ 500 mg L−1, NH3-N ≤ 45 mg L−1 and chroma ≤ 70; CJ 343–2010, China). CONCLUSION The coupled ME-EGSB-A/O system could treat the OTC production wastewater effectively. These findings have significant implications for a cost-efficient system in OTC production systematic treatment. © 2015 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Technology & Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.