Abstract

The experimental work reported here is concerned with the single-phase closed thermosyphon under conditions which are appropriate to a northern application: large length-diameter ratios and heated lengths much greater than cooled lengths. The purpose is twofold: to generate empirical heat transfer data which represent the conservative lower limit of performance (in the absence of boiling or bubbling); and to reveal the thermal and momentum exchange mechanisms which operate at the junction of the heated and cooled sections. The apparatus consisted of a 102-mm-dia, vertical steel pipe of overall length varying from 2 m to 6 m. The lower section of the pipe was heated by means of electric-resistive tape, and the upper section cooled by means of a water jacket. Heat transfer data, plotted in the usual form of Nusselt number versus the quotient of the Rayleigh number and the length-diameter ratio, show the effect of geometry. This data was obtained for 10 ≤ LH/d ≤ 50, and 1 ≤ LH/Lc ≤ 20. An empirical correlation is developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.