Abstract

In the field of industrial informatics and fault diagnostic applications, an important topic is about detecting and locating fault in an industrial machinery in its incipient stage. This enables avoiding severe faults that are often followed by unscheduled process interruptions and escalated maintenance cost. Inverter-driven induction motor drives, among other irregularities, suffer from degradation of switching device (such as insulated gate bipolar transistor (IGBT)) junctions giving rise to spurious resistance at those junction points. The present research attempts to identify those incipient yet progressive faults from motor current signature by a time-domain computation technique for feature extraction followed by the use of support vector machine classifier. Additionally, it is observed that spurious resistance faults in an inverter can be grouped in a particular pattern using mean current vector distribution. Different experimental results confirm that the proposed method is robust to change in motor parameters and load while giving satisfactory classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.