Abstract

The gravitational wave (GW) signature of a binary black hole (BBH) coalescence is characterized by rapid frequency evolution in the late inspiral and merger phases. For a system with total mass larger than 100 M☉, ground based GW detectors are sensitive to the merger phase, and the in-band whitened waveform is a short-duration transient lasting about 10-30 ms. For a symmetric mass system with total mass between 10 and 100 M☉, the detector is sensitive instead to the inspiral phase and the in-band signal has a longer duration, between 30 ms -3 s. Omega is a search algorithm for GW bursts that, with the assumption of locally stationary frequency evolution, uses sine-Gaussian wavelets as a template bank to decompose interferometer strain data. The local stationarity of sine-Gaussian waveforms induces a performance loss for the detection of lower mass BBH signatures, due to the mismatch between template and signal. We present the performance of a modified version of the Omega algorithm, Chirplet Omega, which allows a linear variation of frequency, to target BBH coalescences. The use of Chirplet-like templates enhances the measured signal-to-noise ratio due to less mismatch between template and data, and increases the detectability of lower mass BBH coalescences. We present the results of a performance study of Chirplet Omega in colored Gaussian noise at initial LIGO sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.