Abstract

The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the irreversibility in each component when operating at different loads between 90% and 25%. The power plants have the peculiarity that three of the plants were supplied by three (3) different Original Equipment Manufacturers (OEM); A, B and C. This study is sequel to the fact that the gas turbines were the first independent power plants in the country and after more than fifteen years of operation, it is reasonable to evaluate the performance of the major components. By analyzing the thermodynamic performance of these components, the study demonstrates the utility value of exergy efficiency as an important parameter in the evaluation of major components in a gas power plant. Exergy efficiency is shown to be an important parameter in ranking the power plant components, identifying and quantifying the possible areas of reduction in thermodynamic losses and improvement in efficiencies. A new relationship is derived to demonstrate the correlation between the exergy efficiency and the heat rate of a 30 MW gas power plant. The prediction of the derived relationship correlates well with the observed operational performance of the 30 MW power plants. The combustion chamber in each of the plants provides the maximum exergy destruction during operation. Its exergy efficiency is shown to exhibit good correlation with its energy efficiency and the plant rational exergy. The implication is that from an operational and component selection viewpoint in the specifications of a gas power plant, knowledge of the Heat Rate which is usually provided by the OEM is adequate to make a reasonable inference on the performance of some critical components of the plant.

Highlights

  • The performance of a 270 MW (9 × 30 MW) Applied Energy Services (AES) Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the irreversibility in each component when operating at different loads between 90% and 25%

  • The Applied Energy Services (AES) Corporation barge-mounted gas turbine power plants located at Egbin, about 40 km North East of Lagos in Nigeria are the first Independent Power Plant (IPP) in the country with a total installed generating capacity of 270 MW (9 nos. × 30 MW)

  • Similar results were obtained for the gas power plants B and C

Read more

Summary

Introduction

The Applied Energy Services (AES) Corporation barge-mounted gas turbine power plants located at Egbin, about 40 km North East of Lagos in Nigeria are the first Independent Power Plant (IPP) in the country with a total installed generating capacity of 270 MW (9 nos. × 30 MW). The Applied Energy Services (AES) Corporation barge-mounted gas turbine power plants located at Egbin, about 40 km North East of Lagos in Nigeria are the first Independent Power Plant (IPP) in the country with a total installed generating capacity of 270 MW The power plants were brought to the site in 2001. After more than 15 years of operation, it is reasonable to evaluate the performance of the major components of the power plants. Kotas [1] further highlighted the use of exergy in defining the criteria of performance in thermal plants. Exergy analyses of gas turbine power plants at different locations have been reported by Ebadi and Gorji-Bandpy [5], Rosen and Bulucea [6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.