Abstract

The dependence of the transmission performance of 10 Gb/s systems on the splitting ratio of the Y-branch waveguides in a lithium niobate Mach-Zehnder modulator is assessed theoretically for single arm and dual arm modulation formats. When the splitting ratio is optimized, dual arm modulation using a push-pull configuration offers better dispersion limited performance than a conventional negative chirp modulator with symmetric Y-branch waveguides and single arm modulation (/spl alpha/ parameter of -1). The push-pull configuration also has the advantage of reducing the requirement on the amplitude of the modulating signals. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.