Abstract

AbstractTin zinc oxide (SnZnO) thin film transistors (TFTs) with different component fraction fabricated by solution process were reported. Sn chloride and Zn acetate were used as precursor and the maximum annealing temperature was 500°C. The electrical characteristics of TFTs were acutely affected by the molar ratio between Sn and Zn in the lattice, and showed the highest mobility and on-to-off ratio of about 17 cm2/Vs and 2×106, respectively. The origins of the high performance were traced through both structural and electrical aspects. Sn was generally considered to offer carrier path by superposition of s orbital, but it was found that the increase of Sn fraction only below specific value in lattice contributed to increase mobility, which could be explained by the structural distortion and the defect generation. Zn atoms introduced in the lattice were necessary to control both mobility and carrier concentration. From these results, the solution-processed SnZnO TFT with high performance was suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.