Abstract
We present optimizations for sparse matrix-vector multiply SpMV and its generalization to multiple vectors, SpMM, when the matrix is symmetric: (1) symmetric storage, (2) register blocking, and (3) vector blocking. Combined with register blocking, symmetry saves more than 50% in matrix storage. We also show performance speedups of 2.1/spl times/ for SpMV and 2.6/spl times/ for SpMM, when compared to the best nonsymmetric register blocked implementation. We present an approach for the selection of tuning parameters, based on empirical modeling and search that consists of three steps: (1) Off-line benchmark, (2) Runtime search, and (3) Heuristic performance model. This approach generally selects parameters to achieve performance with 85% of that achieved with exhaustive search. We evaluate our implementations with respect to upper bounds on performance. Our model bounds performance by considering only the cost of memory operations and using lower bounds on the number of cache misses. Our optimized codes are within 68% of the upper bounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.