Abstract

Future planetary exploration missions require the support of 3D vision in the GNC ii) Rendezvous and Docking (RVD) between a Sample Canister (SC) and an orbiter spacecraft; iii) Rover Navigation (RN) on planetary surface. The imaging LiDARs are among the best candidate for such tasks [1-3]. The combination of measurement requirements and environmental conditions seems to find its optimum in the flash 3D LiDAR architecture. Here we present key steps is the evaluation of novelty light detectors and MOEMS (Micro-Opto- Electro-Mechanical Systems) technologies with respect to LiDAR system performance and miniaturization. The objectives of the project MILS (Miniaturized Imaging LiDAR System, Phase 1) concentrated on the evaluation of novel detection and scanning technologies for the miniaturization of 3D LiDARs intended for planetary mission. Preliminary designs for an elegant breadboard (EBB) for the three tasks stated above (Landing, RVD and RN) were proposed, based on results obtained with a numerical model developed in the project and providing the performances evaluation of imaging LiDARs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.