Abstract

Abstract HFP-co-PVDF/N6 hydrophobic/hydrophilic dual-layer membrane was used to study desalination with direct contact membrane distillation (DCMD). A one-dimensional (1-D) model was proposed to predict the flux and thermal efficiency. Heat and mass transfer equations were solved numerically for the combined hydrophilic and hydrophobic layers. The membrane characteristics of the hydrophobic layer were considered for the calculation of the mass transfer coefficients, while the hydrophilic layer was ignored since it was assumed to be filled with water. However, the hydrophilic layer was taken into account during the calculations of conductive heat transfer. Therefore, the equations are different, compared to single-layer hydrophobic membranes. It was found that with the same hydrophobic membrane characteristics, the single-layer membranes performed with better flux and thermal efficiency than the dual-layer membranes. Furthermore, the improvement of flux and thermal efficiency by an addition of the hydrophilic layer has not been observed experimentally, and it is suggested that the improved performance for dual-layer membranes reported previously is due to improved permeability by using thinner and more porous hydrophobic layers that can be mechanically reinforced by the hydrophilic layer. The validation of the model was conducted by comparing the experimental results for single- and dual-layer membranes with the modelling results. The predicted flux and thermal efficiency by the modelling were within 10% error to the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call