Abstract

SummaryDelay‐tolerant networking (DTN) bundle protocol is considered one of the best transmission protocols to be used in space communications by NASA. There are studies that evaluated the performance, measuring the total transfer time of a complete file from sender to receiver, of the DTN protocol via simulation or emulated experiments beyond the real space‐based experiences. In addition, there is a very few additional research works available for the modeling of the Licklider transmission protocol (LTP). However, these past studies on LTP modeling are implemented as a Logarithmic approach that is based on the calculation of loss segments in file delivery. In this work, the approach is investigated in a different manner. Specifically, the performance model was created based on the probability of the segment's successful delivery on the LTP. Moreover, the original model is enhanced via introducing a burst of transfer and equal interval distribution of signaling segments, specifically check point (CP), along with the retransmission time out (RTO). The results from the developed model for the original DTN protocol and enhanced versions align with the results obtained by PC‐based testbeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.