Abstract
Solving large-scale sparse linear systems over GF(2) plays a key role in fluid mechanics, simulation and design of materials, petroleum seismic data processing, numerical weather prediction, computational electromagnetics, and numerical simulation of unclear explosions. Therefore, developing algorithms for this issue is a significant research topic. In this paper, we proposed a hyper-scale custom supercomputer architecture that matches specific data features to process the key procedure of block Wiedemann algorithm and its parallel algorithm on the custom machine. To increase the computation, communication, and storage performance, four optimization strategies are proposed. This paper builds a performance model to evaluate the execution performance and power consumption for our custom machine. The model shows that the optimization strategies result in a considerable speedup, even three times faster than the fastest supercomputer, TH2, while consuming less power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.