Abstract

Performance evaluation and modeling are crucial steps to enabling the optimization of parallel programs. Programs written using two programming models, such as MPI and OpenMP, require analysis to determine both performance efficiency and the most suitable numbers of processes and threads for their execution on a given platform. To study both of these problems, we propose the construction of a model that is based upon a small number of parameters, but is able to capture the complexity of the runtime system. We incorporate measurements of overheads introduced by each of the programming models, and thus need to model both the network and computational aspects of the system. We have combined two different techniques that includes static analysis, driven by the OpenUH compiler, to retrieve application signatures and a parallelization overhead measurement benchmark, realized by Sphinx and Perfsuite, to collect system profiles. Finally, we propose a performance evaluation measurement to identify communication and computation efficiency. In this paper, we describe our underlying framework, the performance model, and show how our tool can be applied to a sample code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.