Abstract

This study presents a comprehensive evaluation of AdaBoost and Random Forest Classifier algorithms in the classification of eye diseases, focusing on a challenging scenario involving an imbalanced dataset. Eye diseases, particularly Cataract, Diabetic Retinopathy, Glaucoma, and Normal eye conditions, pose significant diagnostic challenges, and the advent of machine learning offers promising avenues for enhancing diagnostic accuracy. Our research utilizes a dataset preprocessed with Canny edge detection for image segmentation and Hu Moments for feature extraction, providing a robust foundation for the comparative analysis. The performance of the algorithms is assessed using a 5-fold cross-validation approach, with accuracy, precision, recall, and F1-score as the key metrics. The results indicate that the Random Forest Classifier outperforms AdaBoost across these metrics, albeit with moderate overall performance. This finding underscores the potential and limitations of using advanced machine learning techniques for medical image analysis, particularly in the context of imbalanced datasets. The study contributes to the field by providing insights into the effectiveness of different machine learning algorithms in handling the complexities of medical image classification. For future research, it recommends exploring a diverse range of image processing techniques, delving into other sophisticated machine learning models, and extending the study to encompass a wider array of eye diseases. These findings have practical implications in guiding the selection of machine learning tools for medical diagnostics and highlight the need for continuous improvement in automated systems for enhanced patient care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call