Abstract
This paper investigates the performance of a microgrid with droop-controlled inverters in terms of the total power losses incurred in maintaining synchrony under persistent small disturbances. The inverters are modeled with variable frequencies and voltages under droop control. For small fluctuations from a steady state, these transient power losses can be quantified by an input-output ℋ2 norm of a linear system subject to distributed disturbances. We evaluate this ℋ2 norm under the assumption of a dominantly inductive network with identical inverters. The results indicate that while phase synchronization, in accordance with previous findings, produces losses that scale with a network's size but only weakly depend on its connectivity, the losses associated with the voltage control will be larger in a highly connected network than in a loosely connected one. The typically higher rate of convergence in a highly interconnected network thus comes at a cost of higher losses associated with the power flows used to reach the steady state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.