Abstract

Solar aided (coal-fired) power generation (SAPG) technology has been approved to be an efficient way to use solar energy for power generation. However, most solar-rich areas are often short of cooling water supply, especially in China. The air-cooled condenser could alleviate this issue effectively for power plants in these areas. In this paper, a solar aided power generation with direct air-cool condenser (SAPG + ACC) plant is studied and optimized to maximize its performance. Due to the addition of solar heat in an SAPG plant, the exhaust steam flow rate leaving the turbine changes, especially in power-boost mode, which affects the turbine exit pressure and deviates the condenser from its designed operating condition. To achieve maximum net power output, the correlation among the optimum (turbine) exit pressure (OEP), the solar heat input and the ambient temperature, is obtained in this study. The annual plant's performances with four proposed operating strategies of the air-cooled condenser are compared and analyzed. The results show that for an SAPG + ACC plant, the operating Strategy.3, i.e. operated with the hourly OEP is the optimal one, resulting the plant has annual solar-to-electricity efficiency (SEE) of 17.82% and its levelized cost of electricity (LCOE) is of 0.09 $/kWh.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.