Abstract

The market for variable-speed ductless heat pump (DHP) systems has grown in North America in recent years. However, the tools available for modeling their performance within building simulation programs have not kept pace. In general, simple empirical models are typically used for characterizing equipment performance for use in system simulation. However, unlike more conventional single-speed systems, DHPs have complicated control algorithms for managing electronic expansion valve opening, compressor speed, fan speed, and defrost operation. Very little work has been done in the development of empirical models that explain the impact of these characteristics on the performance of DHP systems. In this article, an empirical approach is introduced to model the heating and defrost performance of DHP systems under a wide range of conditions. The model incorporates separate relationships for performance associated with maximum, minimum, and intermediate (part-load) heating capacities. The defrost operation of the systems is also modeled empirically. The approach was tested on data from two DHP systems and the agreement is very good. The performance of the systems under different building loads was simulated and it is shown that the performance is highly dependent on the system control characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.