Abstract

We present performance manipulation of the squeezed coherent light source based on four-wave mixing (FWM) in alkaline-earth atoms. We investigate the dynamic response of the system and the spectroscopic feature of lasing generated by resonantly enhanced wave-mixing in coherently prepared system. In this method, the spectral purity and stability of the wave-mixing lasing can be manipulated at will by choosing optimal laser parameters. We also analyze the effect of Langevin noise fluctuations on the system and the relative-intensity noise spectrum of the wave-mixing lasing is well below the standard quantum limit (down to -4.7 dB). This work opens new possibilities for alternative routes to laser stabilization and provides a promising path to realize precision metrology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call