Abstract

In this paper, we describe new lower bounds on error variance of phase offset estimation schemes used in IEEE 1588 based synchronization. The motivation for this study is to determine the feasibility of providing microsecond-level time synchronization over mobile backhaul networks for the backend in 4G cellular systems. Many packet filtering/selection techniques for phase offset estimation have been proposed in synchronization literature, however, lower limits on the performance of such estimators have not yet been described. In this paper, we re-derive two Bayesian estimation bounds, namely the Ziv-Zakai and Weiss-Weinstien bounds, for use under a non-Bayesian formulation. This enables us to apply these bounds to the problem of phase offset estimation. Simulation results compare the performance of existing estimation schemes against these lower bounds under a variety of different network scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.