Abstract

This paper examines the asymptotic (M/spl rarr//spl infin/) performance of M-ary frequency-shift keying (M-FSK) in multi-channels, or multiple frequency-nonselective, slowly fading channels, with coding, side information, and diversity reception. In particular, Reed-Solomon (RS) coding is considered in conjunction with the ratio-threshold test (RTT), which generates side information regarding the reliability of received symbols. The asymptotic performance of orthogonal signaling in multichannels with maximal ratio combining (MRC), postdetection equal gain combining (EGC), hybrid selection combining (H-SC), and selection combining (SC) is derived for an arbitrary statistical fading model and diversity order. The derivations reveal that coherent and noncoherent implementations of diversity combining schemes yield the same performance asymptotically. In addition, the asymptotic results are evaluated assuming a Nakagami-m fading model, and the effect of fading severity, diversity order, code rate, and side information upon the performance of the various diversity combiners is investigated. The minimum signal-to-noise ratio (SNR) required to achieve arbitrarily reliable or error-free communication, as well as the associated optimal RS code rate, are determined for various cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.