Abstract

We present a numerical and experimental study of the impact of phase errors on the performance of large, high-resolution arrayed waveguide gratings (AWG) for applications in astronomy. We use a scalar diffraction model to study the transmission spectrum of an AWG under random variations of the optical waveguide lengths. We simulate phase error correction by numerically trimming the lengths of the optical waveguides to the nearest integer multiple of the central wavelength. The optical length error distribution of a custom-fabricated silica AWG is measured using frequency-domain interferometry and Monte-Carlo fitting of interferogram intensities. In the end, we give an estimate for the phase-error limited size of a waveguide array manufactured using state-of-the-art technology. We show that post-processing eliminates phase errors as a performance limiting factor for astronomical spectroscopy in the H-band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.