Abstract

Cu2ZnSn(SxSe1−x)4 (CZTSSe) thin film solar cells have been prepared by vacuum-based thermal evaporation of metal and binary sulfide precursors followed by annealing in a mixed chalcogen vapor at 550°C for one hour. The Zn/Sn ratio in the precursor was varied from 0.75 to 1.50 keeping the Cu/(Zn+Sn) ratio constant at 0.7. The best performing solar cell was obtained with a final film composition of Cu/(Zn+Sn)=0.77 and Zn/Sn=1.13 corresponding to a Zn/Sn ratio of 0.9 in the precursor. The champion cell exhibited an open-circuit voltage (VOC) of 506mV, short-circuit current density (JSC) of 22.92mA/cm2, and a fill factor (FF) of 35% resulting in a total area efficiency (η) of 4.06% without any antireflection coating. Cell performance was found to be limited by high series resistance (RS)=31.1Ω and a low shunt resistance (Rsh)=125.2Ω. No detrimental secondary phases, such as Cu2−xS(Se) or ZnS were detected in the absorber film. Microstructural investigation suggested that small multigrain structure of the CZTSSe absorber layer, presence of an interfacial Mo(S,Se)x blocking barrier, and micro-air-voids at the Mo back contact are the major contributors to the origin of high Rs. Morphological study of the CZTSSe film surface by atomic force microscopy revealed micro-pores that act as low resistance shunt paths and explains the source of such low Rsh. The performance limiting factors of the vacuum based thermally evaporated CZTSSe thin film solar cells are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.