Abstract

In Long-Term Evolution (LTE)-Advanced, a heterogeneous network in which femtocells and picocells overlay macrocells is being extensively discussed in addition to traditional well-planned macrocell deployment to improve further the system throughput. In heterogeneous network deployment, cell selection as well as inter-cell interference coordination (ICIC) is very important to improve the system and cell-edge throughput. Therefore, this paper investigates three cell selection methods associated with ICIC in heterogeneous networks in the LTE-Advanced downlink: Signal-to-interference plus noise power ratio (SINR)-based cell selection, reference signal received power (RSRP)-based cell selection, and reference signal received quality (RSRQ)-based cell selection. The results of simulations (4 picocells and 25 sets of user equipment are uniformly located within 1 macrocell) that assume a full buffer model show that the downlink cell and cell-edge user throughput levels of RSRP-based cell selection are degraded by approximately 2% and 11% compared to those for SINR-based cell selection under the condition of maximizing the cell-edge user throughput due to the impairment of the interference level. Furthermore, it is shown that the downlink cell-edge user throughput of RSRQ-based cell selection is improved by approximately 5%, although overall cell throughput is degraded by approximately 6% compared to that for SINR-based cell selection under the condition of maximizing the cell-edge user throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.