Abstract

In this paper, the bit error rate (BER) performance of a new multiple-input-multiple-output technique, named spatial modulation (SM), is studied under a novel non-stationary wideband high-speed train (HST) channel model in different scenarios. Time-varying parameters obtained from measurement results are used to configure the channel model to make all results more realistic. A novel statistic property called the stationary interval in terms of the space-time correlation function is proposed to describe the channel model’s time-varying behavior. The accurate theoretical BER expression of SM systems is derived under the time-varying wideband HST channel model with the non-ideal channel estimation assumption. The simulation results demonstrate that the BER performance of SM systems shows a time-varying behavior due to the non-stationary property of the employed HST channel model. The system performance can maintain a relative stationary status within the specified stationary interval. It can also be observed that the BER performance of SM systems under the HST channel model is mainly affected by the correlation between sub-channels, inter-symbol-interference, Doppler shift, and channel estimation errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.