Abstract

Selective laser sintering (SLS) was used to fabricate graphite composite plates for polymer electrolyte membrane fuel cells, which has the advantages of reducing time and cost associated with the research and development of bipolar plates. Graphite composite plates with three different designs, i.e., parallel in series, interdigitated, and bio-inspired, were fabricated using the SLS process. The performance of these SLS fabricated plates was studied experimentally within a fuel cell assembly under various operating conditions. The effect of temperature, relative humidity, and pressure on fuel cell performance was investigated. In the tests conducted in this study, the best fuel cell performance was achieved with a temperature of 65–75°C, relative humidity of 100%, and back pressure of 2 atm. The performance of fuel cell operating over an extended time was also studied, with the result showing that the SLS fabricated graphite composite plates provided a relatively steady fuel cell output power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.