Abstract
The series-connected building-integrated photovoltaic/thermal (BIPVT) system can significantly increase the terminal temperature and achieve both power generation and heating. However, its utilization of thermal energy is limited. Airborne infectious diseases threaten indoor occupant health. Pathogenic microorganisms can be thermally inactivated, and the effectiveness of inactivation is positively correlated with exposure temperature and duration. Therefore, series-connected BIPVT system has the potential for air thermal disinfection. Based on this, a multifunctional series-connected BIPVT system that provides heating, power generation, and air purification is proposed. However, these three outputs conflict with each other, and there is a lack of optimized design strategies to maximize the system's overall output. In response, this paper develops a multi-objective optimization strategy for the system and optimizes its design across different climate zones. The main content is as follows: (1) Compared with single-stage systems, series systems can significantly improve air purification performance. The series-connected BIPVT system with the best air purification effect can increase the single-pass inactivation ratio to 100% under the irradiance of 600 W/m2. (2) The glazed photovoltaic/thermal-glazed solar thermal system has the best thermal performance and air purification performance, the thermal efficiency is 38.1% and the clean air delivery rate is 98.6 m3/h under the irradiance of 800 W/m2. (3) Compared to single-objective optimization and non-optimized designs, the multi-objective optimization design achieves the highest technique for order of preference similarity to the ideal solution (TOPSIS) score, which is 0.5968.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.