Abstract

This study investigates the electric vehicle thermal management system performance, utilizing thermal energy storage and waste heat recovery, in response to the imperative shift toward carbon-free electric vehicles to overcome the challenge of low energy efficiency in the thermal management system. The heat generation according to the electrical load on the battery was calculated based on experimental data. The thermal performances of the cabin, power electronic thermal management, and battery thermal management system were explored under various operating conditions at different ambient temperatures. A fully charged thermal energy storage system, including low- and high-temperature phase change materials and waste heat recovery systems, was applied in summer and winter. The total energy consumption for cooling and heating saved to a maximum of 65.9 % in summer and 26.2 % in winter. The mileage extension rate was calculated by distributing the power demand according to the vehicle exterior and motor performance of the battery. Thus, by directly saving the thermal parasitic electrical energy and using it to extend the driving mileage, the electric vehicle achieved a mileage extension of 24.2 % in summer and 18.6 % in winter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call