Abstract
The performance of yttria-stabilized zirconia (YSZ)–samaria-doped ceria (SDC) dual layer electrolyte anode-supported solid oxide fuel cell (AS-SOFC) was investigated. Tape-casting, lamination, and co-sintering of the NiO–YSZ anode followed by wet powder spraying of the SDC buffer layer and BSCF cathode was proposed for fabrication of these cells as an effective means of reducing the number of sintering stages required. The AS-SOFC showed a significant fuel cell performance of ∼1.9 W cm−2 at 800 °C. The fuel cell performance varies significantly with the sintering temperature of the SDC buffer layer. An optimal buffer layer sintering temperature of 1350 °C occurs due to a balance between the YSZ–SDC contact and densification at low sintering temperature and reactions between YSZ and SDC at high sintering temperatures. At high sintering temperatures, the reactions between YSZ and SDC have a detrimental effect on the fuel cell performance resulting in no power at a sintering temperature of 1500 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electrochemical Energy Conversion and Storage
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.