Abstract

A performance analysis of a Diesel engine in terms of effective power (EP), effective power density (EPD) and effective efficiency (EE) has been performed using a novel realistic finite-time thermodynamics (FTT) modeling. The effects of design and operating parameters of the diesel cycle such as bore-stroke length ratio (d/L), equivalence ratio (ER), compression ratio (CR), cycle temperature ratio (CTR), cycle pressure ratio (CPR), stroke length (L), friction coefficient (FRC), engine speed (N), mean piston speed, inlet pressure and inlet temperature on the engine performance have been investigated. In addition, the energy losses depending on incomplete combustion (IC) , friction losses (FRL), heat transfer losses (HTRL) and exhaust output losses (EOL) have been described as fuel input energy. In order to acquire reasonable results, variable specific heats with respect to temperature for working fluid have been used. The results presented could be an essential tool for Diesel engine designers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.