Abstract

Studies assessing the efficacy of wildlife crossing structures often lead to spurious results because of their failure to address masking effects of confounding variables. Confounding variables include variation in human activity, density of crossing structures along the highway corridor, and equality of species' perceived access to each crossing structure. We investigated these issues for wide-ranging large carnivores and their prey species in Banff National Park, Alberta, using data obtained from systematic, year-round monitoring of 13 newly constructed crossing structures for wildlife (underpasses and overpasses) for 34 months post-construction. We standardized the first confounding variable by selecting crossing structures remote from areas of human activity. The second confounding variable we standardized by developing probability models of crossing structure usage assuming habitat homogeneity. We standardized the third confounding variable by developing species-specific, performance indices of crossing structures (=observed through passage usage–expected through passage usage). We regressed the species performance indices against 13 crossing structure variables encompassing structural, landscape, and human activity. Our results suggest that in absence of high human activity structural attributes best explained the performance indices for both large predator and prey species, while landscape and human-related factors were of secondary importance. Crossing structures that were high, wide and short in length strongly influenced passage by grizzly bears Ursus arctos, wolves Canis lupus, elk Cervus elaphus, and deer Odocoileus sp. More constricted crossing structures were favoured by black bears Ursus americanus and cougars Puma concolor. Distance to cover was the most important crossing structure landscape attribute for cougars (negative correlation) and was a significant factor determining passage for grizzly bears, elk and deer (all positive correlations). Our findings underscore the importance of: (a) integrating temporal and spatial variability a priori when addressing the efficacy of crossing structures, and; (b) demonstrate that species respond differently to crossing structure features. In light of these results, we suggest that to maximize connectivity across roads for multiple large mammal species, road construction schemes should include a diversity of crossing structures of mixed size classes. Mitigation planning in a multiple-species ecosystem is likely to be a challenging endeavour and long-term research will aid in the decision-making process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.