Abstract
Unique electrical and surface-to-volume properties of carbon nanotubes have made these conductive molecules highly attractive in many applications. In this work, the influence of multi-walled carbon nanotubes into a zinc oxide active layer of dye-sensitized zinc oxide solar cell has been investigated. With this method, a significant improvement in the performance of the solar cell has been achieved. Compared to the typical zinc oxide photoelectrochemical cells, the photocurrent-voltage characteristics of the fabricated cell containing 0.05 percent by weight of carbon nanotubes in the metal oxide film displayed a higher short-circuit photocurrent, consequently caused an increase of the solar-to-electricity conversion efficiency by a factor of approximately 1.4. Further increase of the conductive carbon material resulted in a decrease of the energy conversion of the photovoltaic cell. The enhancement of the energy conversion at this optimum carbon nanotube loading may be attributed to the dye-adsorption ability and the electrochemical activity of the composite photoanodes. The fabricated photovoltaic cells with the highest efficiency exhibited the maximum dye adsorption intensity and the minimum charge transfer resistance, as measured by ultraviolet-visible spectroscopy and electrochemical impedance spectroscopy, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.