Abstract

Generally speaking for a HTS coil, perpendicular magnetic field to conductor's broad surface should be suppressed as small as possible in relation to the magnetic anisotropy. This is a reason why toroidal coil with relatively many elementary coils is expected for HTS-SMES. On the other hand, from the point of view of the homogenization of critical current distribution in the coil, perpendicular field and parallel field should be balanced corresponding to the ratio of the magnetic anisotropy. This means that a certain level of the perpendicular field is effective to reduce local heat generation in the coil. Furthermore, this concept is especially reasonable for a high-field coil with usual winding method (flat-wise winding) because the perpendicular field does not induce hoop stress which decreases the critical current. In this paper, we show these findings through an optimal design of a MOCVD-YBCO toroidal coil for 2 GJ class SMES taking account of magnetically and mechanically influenced J - E characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.