Abstract
Abstract A new design to enhance the output power of a Savonius hydrokinetic turbine by using buckets with airfoil profile instead of a conventional semi-circular design is developed. Effects of different camber angles of buckets’ airfoil at 105°, 120°, 130°, and 140° are investigated and compared with the conventional profile. In addition, the influence of varying the buckets’ camber position of the airfoil is considered to determine the camber angle at the maximum output power. Accordingly, a two-dimensional, unsteady incompressible turbulent flow model is developed and numerically simulated. The predicted results from the simulations are validated using available measurements. Results show that a significant enhancement of maximum output power is obtained using the airfoil profile at all studied camber angles compared to the traditional Savonius turbine with a semicircular profile. Furthermore, using a camber angle of 140° attains the highest output power compared to other designs. At a water current speed of 0.4 m/s, and the overlap ratio of 0.15, the maximum power coefficient is 0.193. However, for the conventional design with a semi-circular profile, the maximum attainable power coefficient is 0.1 at the same operating conditions. The current findings provide an alternate direction in utilizing Savonius turbines with bucket airfoil profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.