Abstract

We have investigated the performance of organic light-emitting devices (OLEDs) with a rubrene-doped mixed single layer by using 4,4′-bis[N-(1-napthyl)-N-phenyl- amion] biphenyl (α-NPD) as hole transport layer. Comparing to a conventional heterostructure OLED, equal luminance vs. current density characteristics were obtained. In addition, maximum power efficiency was threefold improved, and the achieved value was 5.90 lm/W by optimizing a mixing ratio of hole and electron transport materials. By evaluating the temperature dependence of the J – V characteristics for electron-injection dominated device, the electron injection from Al/LiF to mixed organic layer is attributed to Schottky thermal emission model. And the barrier height of the electron injection from Al/LiF into mixed single layer was obtained to be 0.62 eV, which is lower than Al/Alq3 interface. Meanwhile, the mixed single-layer device exhibited superior operational durability at a half-luminance of 2,250 h under a constant current operation mode. The reliability was improved with a factor of two compared to the heterostructure device due to the improvement of stability in mixed organic molecules and removal of the heterojunction interface in the mixed single-layer device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.