Abstract

In the present paper, an integration of a (Lithium Bromide–Water) absorption inlet air cooling scheme to a cooled gas turbine-based combined cycle was analyzed. The waste heat energy of the exhaust gas prior to the exit of the waste heat recovery steam generator was chosen to power the cooling system. Nubaria Power Station, 120 km South East of Alexandria has been selected as a reference plant for the present study. It includes 3 generation modules, each including 2 * 250 MW gas turbine and 250 MW Steam turbine. A thermodynamic model of the overall integrated scheme of the cooling and power cycles is introduced. A parametric study of the effect of different operational conditions, namely; ambient temperature, relative humidity, compressor inlet air temperature, and part load on performance parameters was carried out. The model shows an increase of 11% in the produced electricity when the inlet air was cooled from 30 °C to 10 °C, Also, harvesting of condensed fresh water at a rate of 3.5 gm per kg of inlet air at ambient relative humidity of 60%. The model results have been verified by observing the real performance of the plant at various ambient conditions to ensure the accuracy of the model predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.