Abstract

In this work, the hydrophobic polyethersulfone (PES) membrane was modified by incorporating Ti3AlCN MAX phase. Synthesis of Ti3AlCN MAX phase was performed using the reactive sintering method. The scanning electron microscopy (SEM) images showed a 3D compressed layered morphology for the synthesized MAX phase. The Ti3AlCN MAX phase was added to the casting solution, and the mixed-matrix membranes were fabricated by the non-solvent induced phase inversion method. The performance and antifouling features of bare and modified membranes were explored by pure water flux, flux recovery ratio (FRR), and fouling resistance parameters. Through the modification of membranes by introducing the Ti3AlCN MAX phase, the enhancement of these features was observed, in which the membrane containing 1 wt% of MAX phase showed 17.7 L/m2.h.bar of permeability and 98.6% for FRR. Also, the separation efficiency of all membranes was evaluated by rejecting organic and inorganic pollutants. The Ti3AlCN MAX membranes could reject 96%, 95%, and 88% of reactive blue 50, Rose Bengal, and azithromycin antibiotics, respectively, as well as 98%, 80%, 86%, and 36% of Pb2+, As5+, Na2SO4, and NaCl, respectively. Finally, the outcomes indicated the Ti3AlCN MAX phase was an excellent and efficient novel additive for modifying the PES membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.