Abstract

An experimental study is conducted on high voltage waveforms used to power plasma actuators. Shapes that present an asymmetry between the two half cycles are investigated by means of induced thrust and velocity measurements. A parametric study is performed based on thrust measurements in order to find the optimum shape within the tested range. An asymmetric waveform which is made as a combination of sinusoidal and square shapes is found to increase produced thrust by almost 30% compared with the conventional sinusoidal waveform. The asymmetric waveform is further analysed using time-resolved particle image velocimetry in order to reveal the forcing mechanism governed by the shape differences. It is shown that the shape of the waveform has a significant effect on the performance of the actuator. Push and pull events occur within the actuation period and their respective strength and duration closely correlates with the shape of the waveform. It is found that the pull event is significantly weakened for the case of the optimized asymmetric waveform in comparison with the sinusoidal shape. This effectively increases the net momentum transfer and an improvement of approximately 40% in maximum induced velocity is achieved compared with sine waveform. Power consumption due to the asymmetric waveform is marginally increased which provides a significant increase in the actuator's relative efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call