Abstract

Power generation of a fuel cell (FC) is mostly dependent upon operational variables such as cell temperature and membrane water content. There is an individual maximum power point (MPP) on the P-I curve of the FC. The location of the MPP varies with respect to the MPP position. Thus, an MPP tracking (MPPT) system should exist to guarantee that the FC works at the MPP in order to maximize the functionality. Due to their straightforward structure, prevalent MPPT methods had strong functionality. However, their primary limitations include fluctuations around the MPP and inefficiency under abrupt variations of operating conditions. The primary objective of this paper is to maintain the PEMFCs operation at an efficient power point. To this purpose, the efficiency of PEM-FC is tested and enhanced using a variety of MPPT-based smart controller techniques. To determine the appropriate MPPT controller parameters, the modified fluid search optimization (MFSO) approach and fuzzy logic controller (FLC) are employed. Furthermore, the MFSO method is deployed to adjust the membership functions (MFs) of the FLC. The MFSO is an excellent approach for coping with the stochastic behavior of the PEM-FC system when the temperature and water content of the membrane change. In terms of improved dynamic behavior, better convergence rate, reduced oscillations, and better tracking of the MPP, the results obtained by employing the suggested strategy demonstrate the superior functionality of the system compared to case using other methods. Moreover, the power generated by the PEMFC system is less than the nominal capacity for the temperature's rated capacity. Therefore, the deficit in power would be covered by transacting power with the grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.