Abstract
A fuel cell device is presented based on a counter-flow microfluidic fuel cell (CFMFC) with nano-porous electrodes by developing an advection flux of ions within the electric double layer (EDL). Typically, in a microfluidic fuel cell, advection in the EDL is negligible because the near wall electrolyte velocity is zero. However, by using nano-pores, a non-negligible ion flux due to advection can be developed in the charged regions of the EDL which affects the structure of the EDL. In this article, we use a mathematical model to study how advection in the EDL affects the kinetic performance of fuel cells. Our model predicts that the peak power density can be increased by more than 2 fold in a CFMFC using this approach to kinetic enhancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.