Abstract

The performance of nitride-based LEDs was improved by inserting dual stage and step stage InGaN/GaN strain relief layer (SRL) between the active layer and n-GaN template. The influences of step stage InGaN/GaN SRL on the structure, electrical and optical characteristics of GaN-based LEDs were investigated. The analysis of strain effect on recombination rate based k·p method indicated 12.5% reduction of strain in InGaN/GaN MQWs by inserting SRL with step stage InGaN/GaN structures. The surface morphology was improved and a smaller blue shift in the electroluminescence (EL) spectral with increasing injection current was observed for LEDs with step stage SRL compared with conventional LEDs. The output power of LEDs operating at 20 mA was about 15.3 mW, increased by more than 108% by using step stage InGaN/GaN SRL, which shows great potential of such InGaN/GaN SRL in modulating InGaN/GaN MQWs optical properties based on its strain relief function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call