Abstract

Investigations on the high-performance flexible ultraviolet photodetectors have been becoming one of the interesting research focuses in recent years. ZnO is considered as suitable material for ultraviolet photodetection due to its wide bandgap (~3.37 eV). In this work, ZnO nanorod arrays were prepared using the hydrothermal method at the temperature of 70 ℃ on flexible substrates. Polyethyleneimine (PEI) was added into hydrothermal solution as the growth additive to achieve the performance improvement of the ZnO nanorod arrays ultraviolet photodetector. SEM, XRD, absorption spectroscopy, Raman spectroscopy and XPS were employed to characterize the morphology, crystallinity, optical properties and chemical composition. The introduction of PEI adjusts the growth process of ZnO nanorod arrays and affects the distribution of defect states, which brings out the improvement of the optoelectronic performance of ZnO nanorod arrays ultraviolet photodetectors. Compared with pure ZnO, the higher photo to dark current ratio and responsivity, and quicker time response speed are demonstrated in the PEI-assisted ZnO nanorod arrays photodetectors. And more photoresponse parameters are also discussed and compared. Furthermore, the photodetectors also display outstanding mechanical flexibility and robustness under multiple bending cycle tests. Our work presents a potential approach for improving the optoelectronic performance of simple-operated flexible ultraviolet photodetectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.