Abstract

ABSTRACT In any machining operation, the use of coolants is essential to dissipate heat generated during machining and hence to improve productivity, machinability, etc. However, the use of cutting fluids in machining operations may seriously degrade the quality of environment. New cutting techniques are to be investigated to alleviate the problems associated with wet machining. To overcome some of the problems, an attempt has been made to use graphite as a solid lubricant. This paper deals with an investigation on using graphite as a solid lubricant to reduce the heat generated at the milling zone. An experimental setup has been developed to direct graphite powder continuously onto the workpiece and tool interface at the required flow rate. Experimental studies have been conducted to see the effect of tool geometry (radial rake angle and nose radius) and cutting conditions (cutting speed and feed rate) on the machining responses such as cutting forces, specific energy, and surface finish in solid lubricant assisted machining using four fluted solid coated carbide end mill cutters. Results indicate that there is a considerable improvement in the performance of milling AISI 1045 steel using graphite as a solid lubricant when compared with machining using cutting fluids in terms of specific energy requirements, cutting force, and surface finish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.